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Outline

• Introduction/Overview of Project Tasks/Goals, People,
Budget

• Research Highlights Summary
• Technology Highlights
• Other Examples of Project Impact (Conferences,

NanoCarbon/Nanotubes Themes, Invited Papers,
Follow-on funding, etc.)

• Highlight Presentations
– Functionalized Carbon Materials
– Fracture Toughness of a-D & UNCD
– Tribology and Surface Chemistry of UNCD and

NFC.
• Summary and Future Work
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The Team
Workshop at NCSU – February 23, 2004
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Budget

$220K Funding used to support
postdocs, graduate students

$300TOTAL

Annual Workshop
(coordinated by ANL/SNL)

15All

Graduate Student10UF

Graduate Student25NCSU

Graduate Student25UW-
Madison

Graduate Student25LBNL

Postdoc65ORNL

PI’s65SNL

Postdoc
Graduate Student (Theory)

$55
15

ANL

Type of SupportFunding ($1,000’s)Institution
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Science Highlights

• Self-Assembled Carbon Nanocomposites &
Flying Nanotubes (ANL, ORNL)

• Functionalized Diamond surfaces (ANL, UW-
Madison, NCSU)

• Vertically aligned carbon nanofibers/nanocones
(ORNL)

• Fracture Toughness of a-D and UNCD (NW, SNL,
ANL, UF)

• Quantum Chemistry Simulations of electronic
transport in n-type UNCD

• Field Emission/Thermionic Energy Generation
(NCSU, ANL)

• Thermal Transport of UNCD (ANL, UF)

• Tribology/Surface Chemistry (including NEXAFS)
of a-D, UNCD and NFC (UW-Madison, SNL, ANL)
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Technology Highlights

• Conversion Electron Surfaces
(SNL/ANL collaboration with
NASA/Goddard)

• LBNL/Hysitron Corporation SBIR

• UNCD/IPLAS R&D100 award

• Advanced Diamond Technologies,
Inc. (SBIR)

• New large area plasma system at
ANL (OIT,OBER)
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Impact

• Papers: 10

• Invited Presentations: 17

• Follow-on Funding:
– DARPA, NIRT, LDRD, MURI, SBIR

• Other Stuff:
– ADC/NanoCarbon 2005 Conference at ANL

– Spring 2005 MRS Symposium on Diamond

– NanoCarbon Theme at the ANL Center for Nanoscale
Materials (upcoming Workshop)

– Nanotube RFA at the ORNL Center for Nanophase
Materials Sciences.

– Industrial Collaborations
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Synopsis: UNCD Could enable robust Biosensors

• Electrochemical Electrode
(Wide working potential)

• UNCD can be grown at low
temperatures

• UNCD can be made highly
electrically conductive

• UNCD Mechanical properties
(high frequency, high Q)

• UNCD MEMS

• Bio-inert, Bio-compatible

• Surface Functionalization
(Robust, Stable, Selective)

Silicon Chip CMOS

UNCD BioMEMS Sensor

UNCD
Cantilever

Target Analyte

Δf
Electrode

UNCD cantilevers 

J. A. Carlisle  and O. Auciello, Interface, 12, 28(2003).
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Electrochemical Functionalization of UNCD

RN2

+

R.

R

-N2

e-

Stable covalent C-C bond

Electrode
(UNCD)

Solution

• Radicals generated by
electrochemical  reduction of
aryl diazonium cations
– One electron transfer reaction
– Radicals are generated at the

electrode/electrolyte interface
– Radicals couple to UNCD

surface forming covalent
bonding

• Advantages
– Simple and fast  (in minutes

or seconds vs. hours in
photochemistry)

– Negligible bulk reaction
– Abundant aryl derivatives
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Potential (V vs. Ag/AgCl)

Electrochemical Functionalization of UNCD
with 4-Nitrophenyl Diazonium
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XPS of 4-Nitrophenyl-modified UNCD
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Electrochemical Biosensor

• Neurotoxic organophosphates (OPs)

– chemical warfare agents
•  Iran-Iraq conflict

• 1995 Tokyo subway incident

• Enzyme-based electrochemical
sensing

– simple, rapid and lightweight

– truly portable bioanalytical
devices

• Integration the UNCD-based
biocomposites with electrochemical
detection will ultimately yield
biosensing devices with enhanced
biocompatibility, sensitivity,
selectivity and stability.
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Outline

• Introduction/Overview of Project Tasks/Goals, People, Budget
• Research Highlights Summary
• Technology Highlights
• Other Examples of Project Impact (Conferences,

NanoCarbon/Nanotubes Themes, Invited Papers, Follow-on
funding, etc.)

• Highlight Presentations

– Functionalized Carbon Materials
– Tribology and Surface Chemistry of UNCD and NFC.
– Fracture Toughness of a-D & UNCD

• Summary and Future Work
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Do new tribological and mechanical behaviors emerge
in carbon-based materials at the nanoscale?

• What are the tribological
consequences of reduced
dimensions?
–  Transfer film formation
–  Surface chemistry
–  Adhesion

• What are the mechanical
consequences of reduced
dimensions?
–  Nature of strength limiting defects
–  Energy dissipation

• Can we demonstrate improved
function of carbon based MEMS
over their Si counterparts?

Nanoscale mechanics studies of
nanostructured carbon materials

and new measurement techniques

prediction,
design,

understanding

Mechanics of
multi-asperity

contacts

Single asperity:
Ff=τAc (?)

Multiple asperity:
Ff=µL (?)Topographic

studies:
constitutive laws
for friction & wear

Ff

Fn

50 µm

a-D µmachine 
interfaceSi-SNL
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Collaboration is the key to progress

Investigator  Institution Contributions
M. Dugger SNL     Micro- and nano-scale tribology
R. W. Carpick U. W. Madision AFM based friction/adhesion
T. A. Friedmann SNL a-D growth, characterization, device fab.
J.A. Carlisle ANL UNCD growth and characterization

Investigator  Institution Contributions
T. Buchheit SNL     Micromechanical testing
H.D. Espinosa NW  Micromechanical testing with strain
T. A. Friedmann SNL a-D growth, characterization, device fab.
O. Auciello ANL UNCD growth and characterization

Mechanical properties of carbon based MEMs

Tribology of carbon at varying length scales
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H-plasma treatment changes
UNCD backside bonding and morphology

• Ultrasonically seeded with diamond
nanoparticles

• H appears to etch the super grain boundaries
• Grain boundaries and super grain boundaries

may be regions of sp2- bonded carbon that
get etched faster by H.

• NEXAFS confirms removal of sp2 and H-
termination

Bottom surface before H-termination

Bottom surface after H-termination

Substrate chemically etched away
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H-Surface termination reduces
nanoscale friction and adhesion in diamond
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R. Carpick UW-Madison

Comparison of friction and adhesion in NFC and diamond
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Friction in NFC decreases with increasing
H content - adhesion is constant
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Fracture behavior of nanostructured materials- A
comparison between a-D and UNCD

• Low strength samples have flaws due to
masking problems.  High strength
samples fail at sidewall due to etching
induced roughness

• Low strength samples have flaws from
mechanical seeding process.  Ultrasonic
seeding gives much higher strength
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X
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UNCD and a-D have high fracture toughness

€ 

KIC =σ f πa f ( a
W
)

€ 
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) =1.12 − 0.23( a
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) +10.55( a
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)4

σ σ
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W

• Microindentor used to induce sharp
crack in beam by propagation from
the sacrificial material.

• Sharp cracks allow accurate
calculation of fracture toughness
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Summary of fracture behavior

1591160polysilicon

382513.586226.2800a-D

351811.685814.5955UNCD
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σ0V
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K1C
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E
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Material

H.D.  Espinosa NW
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Laterally deformable nanomechanical motion
sensor with high sensitivity

• In-plane motion generated by
applied voltage

• Optical out-of-plane detection
• Sensitivity <170 pm/Hz1/2

• Characterize dissipation in
nanomechanical structures

• Significant applications for motion
sensors

a-D Nanomechanical Resonator
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Future

• Electrochemical functionalization of
carbon surfaces for biosensors
– How selective is binding?
– How robust?

• Friction and adhesion studies on tailored
carbon surfaces
– How are friction and adhesion related to the

chemistry of the surface?
– What are the optimal morphological and

chemical properties for carbon
nanodevices?

• Materials properties studies of carbon
materials
– Thermal conductivity
– Optimize growth to reduce defects &

increase strength
– Fatigue in carbon MEMS

• Temperature dependent studies of
dissipation phenomena in disordered or
amorphous carbon
– Is it possible to identify and characterize

dissipating two-state tunneling defects?
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Conclusions

• Glue money is working well

– New collaborations have been established

– These collaborations are producing collaborative work

• Demonstrated electrochemical functionalization of UNCD

• UNCD surfaces show tremendous potential for biosensors

• Contact, friction, and adhesion are intimately related to surface

morphology and chemistry. H-termination reduces friction in UNCD

• a-D and UNCD have outstanding mechanical properties compared to

polysilicon - high strength and toughness.

• New optical measurement technique developed to characterize

dissipation in nanomechanical structures.
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• Supplemetary Material
– One-page highlights

– Summary of Accomplishments
• Papers, Invited Talks, etc.
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UNCD Related Carbon Nanocomposites

UNCD/CNFs

UNCD can’t be deposited on CNFs directly and
Diamond seeding layer protected CNFs and also
served as nucleation layer for UNCD deposition

I-V characteristics F-N plot 

)/exp(/ 232 EBEAJ ββ ΦΦ=
Fowler-Nordheim equation:

The slope of φ3/2/β, represents the combined effect of
effective work function and enhancement of local
electric field;
Q φ3/2/β  ↓ & β ↓   ∴  φ ↓ ↓

CNTs and UNCD/CNTs

Vertically aligned CNTs Fast grown CNTs

Coiled CNTs A Bunch of CNTs

Catalyst: Fe, Ni, Co
Plasma chemistry:
Ar/CH4;H2/CH4; H2/C2H2

Si
Catalyst and seeds1.

2.

sputtering

H2 flow

3.
Plasma

Nano
particles

Growing 
CNTs

•CNTs and UNCD can be deposited simultaneously. The key is
how to address the catalyst for growing CNTs and the seeds for
growing UNCD

Y-Junction

Each super UNCD particle (randomly distributed) is connected by
CNTs, “Self-assembly nanoelectronic circuit” of UNCD and CNTs
could be achieved

CNTs connected pattern UNCD/CNTs

UNCD

CNTs

VACNTs

UNCD/CNTs

X. Xiao, J. Elam, O. Auciello, J.A. Carlisle (ANL)



ANL/SNL/ORNL/LBNL/NW/UF/UW-MadisonANL/SNL/ORNL/LBNL/NW/UF/UW-Madison 27

Carbon Nanotubes get their Wings

• Carbon Nanotubes were modified  using
hydrogen-poor Ar/CH4 microwave plasma.

• New carbon nanostructure was created

– H+ ions rip open nanotube
sidewalls

– Graphitic sheets are directly
grafted onto the nanotube walls.

• Prickly nanotubes have ~2 orders of
magnitude more active surface area

• Possible Applications:

– More senstivice electrochemical
electrodes

– Better biosensors

– Improved electron field emission

• Featured on cover of upcoming
issue of Advanced Materials [Adv.
Mat. 16, 610 (2004)]

S. Trasobares, J. Birrell, D. Miller, J.A. Carlisle (ANL)
P. Ajayan, O. Stephan (RPI)
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Thermionic Thermionic Field EmissionField Emission

Spatial distribution of electron emission sites for sulfur doped and intrinsic nanocrystalline diamond films
Köck FAM, Garguilo JM, Nemanich RJ, Gupta S, Weiner BR, Morell G
DIAMOND AND RELATED MATERIALS 12 (3-7): 474-480 2003

T- FEEM of S-Doped Nanocrystalline Diamond (50ppm H2S in H2)
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Electron emission starts at ~XXX°C and
increases with increasing temperature.
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HRTEM: internal structure of the nanocones

• Catalyst particle located at the tip (tip growth mode)

• Amorphous structure

• Silicon cone formed at base is continuous with the substrate

• Rounded tip due to plasma etching if catalyst particle is lost: seen (b)

VACNF
Nanocone
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Thermal Transport and Phonon Scattering at Diamond Interfaces
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• Kapitza resistance results in
temperature discontinuities at
interfaces

Schelling, Phillpot and Keblinski, JAP 95, 6082 (2004).


